IUMJ
Chao Xia, On an anisotropic Minkowski problem, Indiana Univ. Math. J. 62 (2013), 1399-1430.
abstract · cite · oai metadata · doi#: 10.1512/iumj.2013.62.5083

Constantin Vernicos, Asymptotic volume on Hilbert geometries, Indiana Univ. Math. J. 62 (2013), 1431-1441.
abstract · cite · oai metadata · doi#: 10.1512/iumj.2013.62.5138

Constantine Dafermos, Heat Flow with Shocks in Media with Memory, Indiana Univ. Math. J. 62 (2013), 1443-1456.
abstract · cite · oai metadata · doi#: 10.1512/iumj.2013.62.5126

Paul Kirk and Scott Baldridge, Co-isotropic Luttinger surgery and some new examples of symplectic Calabi-Yau 6-Manifolds, Indiana Univ. Math. J. 62 (2013), 1457-1471.
abstract · cite · oai metadata · doi#: 10.1512/iumj.2013.62.5085

Shigeaki Koike and Andrzej Swiech, Representation formulas for solutions of Isaacs integro-PDE, Indiana Univ. Math. J. 62 (2013), 1473-1502.
abstract · cite · oai metadata · doi#: 10.1512/iumj.2013.62.5109

Fedor Nazarov, Alexander Reznikov and Alexander Volberg, The proof of $A_2$ conjecture in a geometrically doubling metric space, Indiana Univ. Math. J. 62 (2013), 1503-1533.
abstract · cite · oai metadata · doi#: 10.1512/iumj.2013.62.5098

Francesca Alessio, Stationary layered solutions for a system of Allen-Cahn type equations, Indiana Univ. Math. J. 62 (2013), 1535-1564.
abstract · cite · oai metadata · doi#: 10.1512/iumj.2013.62.5108

Sun-Sig Byun and Dian Palagachev, Boundedness of the weak solutions to quasilinear elliptic equations with Morrey data, Indiana Univ. Math. J. 62 (2013), 1565-1585.
abstract · cite · oai metadata · doi#: 10.1512/iumj.2013.62.5115

Efren Ruiz and Mark Tomforde, Ideal-related $K$-theory for Leavitt path algebras and graph $C^*$-algebras, Indiana Univ. Math. J. 62 (2013), 1587-1620.
abstract · cite · oai metadata · doi#: 10.1512/iumj.2013.62.5123

Christian Rosendal, Global and local boundedness of Polish groups, Indiana Univ. Math. J. 62 (2013), 1621-1678.
abstract · cite · oai metadata · doi#: 10.1512/iumj.2013.62.5133

Adam Fuller and Matthew Kennedy, Isometric tuples are hyperreflexive, Indiana Univ. Math. J. 62 (2013), 1679-1689.
abstract · cite · oai metadata · doi#: 10.1512/iumj.2013.62.5144