Chao Xia,
On an anisotropic Minkowski problem,
Indiana Univ. Math. J. 62
(2013), 1399-1430.
abstract ·
cite ·
oai metadata ·
doi#: 10.1512/iumj.2013.62.5083
Constantin Vernicos,
Asymptotic volume on Hilbert geometries,
Indiana Univ. Math. J. 62
(2013), 1431-1441.
abstract ·
cite ·
oai metadata ·
doi#: 10.1512/iumj.2013.62.5138
Constantine Dafermos,
Heat Flow with Shocks in Media with Memory,
Indiana Univ. Math. J. 62
(2013), 1443-1456.
abstract ·
cite ·
oai metadata ·
doi#: 10.1512/iumj.2013.62.5126
Paul Kirk and Scott Baldridge,
Co-isotropic Luttinger surgery and some new examples of symplectic Calabi-Yau 6-Manifolds,
Indiana Univ. Math. J. 62
(2013), 1457-1471.
abstract ·
cite ·
oai metadata ·
doi#: 10.1512/iumj.2013.62.5085
Shigeaki Koike and Andrzej Swiech,
Representation formulas for solutions of Isaacs integro-PDE,
Indiana Univ. Math. J. 62
(2013), 1473-1502.
abstract ·
cite ·
oai metadata ·
doi#: 10.1512/iumj.2013.62.5109
Fedor Nazarov, Alexander Reznikov and Alexander Volberg,
The proof of $A_2$ conjecture in a geometrically doubling metric space,
Indiana Univ. Math. J. 62
(2013), 1503-1533.
abstract ·
cite ·
oai metadata ·
doi#: 10.1512/iumj.2013.62.5098
Francesca Alessio,
Stationary layered solutions for a system of Allen-Cahn type equations,
Indiana Univ. Math. J. 62
(2013), 1535-1564.
abstract ·
cite ·
oai metadata ·
doi#: 10.1512/iumj.2013.62.5108
Sun-Sig Byun and Dian Palagachev,
Boundedness of the weak solutions to quasilinear elliptic equations with Morrey data,
Indiana Univ. Math. J. 62
(2013), 1565-1585.
abstract ·
cite ·
oai metadata ·
doi#: 10.1512/iumj.2013.62.5115
Efren Ruiz and Mark Tomforde,
Ideal-related $K$-theory for Leavitt path algebras and graph $C^*$-algebras,
Indiana Univ. Math. J. 62
(2013), 1587-1620.
abstract ·
cite ·
oai metadata ·
doi#: 10.1512/iumj.2013.62.5123
Christian Rosendal,
Global and local boundedness of Polish groups,
Indiana Univ. Math. J. 62
(2013), 1621-1678.
abstract ·
cite ·
oai metadata ·
doi#: 10.1512/iumj.2013.62.5133
Adam Fuller and Matthew Kennedy,
Isometric tuples are hyperreflexive,
Indiana Univ. Math. J. 62
(2013), 1679-1689.
abstract ·
cite ·
oai metadata ·
doi#: 10.1512/iumj.2013.62.5144