Title: Geometry and stability of surfaces with constant anisotropic mean curvature
Authors: Miyuki Koiso and Bennett Palmer
Issue: Volume 54 (2005), Issue 6, 1817-1852
Abstract: We study the geometry of surfaces which are in equilibrium for a (constant coefficient) parametric elliptic functional with a volume constraint. We consider the first and second variations and the exceptional set of the Gauss map for such surfaces. The equilibrium surfaces of revolution (anisotropic Delaunay surfaces) are also discussed as is an anisotropic version of the Willmore functional.