IUMJ

Title: Proper holomorphic immersions in homotopy classes of maps from finitely connected planar domains into CxC*

Authors: Finnur Larusson and Tyson Ritter

Issue: Volume 63 (2014), Issue 2, 367-383

Abstract:

Gromov, in his seminal 1989 paper on the Oka principle, proved that every continuous map from a Stein manifold into an elliptic manifold is homotopic to a holomorphic map. Previously, we have shown that, given a continuous map $X\to\mathbb{C}\times\mathbb{C}^{*}$ from a finitely connected planar domain $X$ without isolated boundary points, a stronger Oka property holds: namely, that the map is homotopic to a proper holomorphic embedding. Here, we show that every continuous map from a finitely connected planar domain (possibly with punctures) into $\mathbb{C}\times\mathbb{C}^{*}$ is homotopic to a proper immersion that identifies at most countably many pairs of distinct points, and in most cases, only finitely many pairs. By examining situations in which the immersion is injective, we obtain a strong Oka property for embeddings of some classes of planar domains with isolated boundary points. It is not yet clear whether a strong Oka property for embeddings holds in general when the domain has isolated boundary points. We conclude with some observations on the existence of a null-homotopic proper holomorphic embedding $\mathbb{C}^{*}\to\mathbb{C}\times\mathbb{C}^{*}$.