IUMJ

Title: On the growth of vector-valued Fourier series

Authors: Javier Parcet, Fernando Soria and Quanhua Xu

Issue: Volume 62 (2013), Issue 6, 1765-1784

Abstract:

Let $f:\mathbb{T}\to\mathrm{X}$ satisfy
\[
\int_{\mathbb{T}}\|f(x)\|_{\mathrm{X}}(\log^{+}\|f(x)\|_{\mathrm{X}})^{1+\delta\
}\dx<\infty,
\]
where $\mathrm{X}$ is a UMD Banach space and $\delta>0$. Then, we prove that
\[
\Big\|\sum_{|k|\le n}\hat{f}(k)e^{2\pi ikx}\Big\|_{\mathrm{X}}=o(\log\log n)\quad\mbox{for almost every }x\in\mathbb{T}.
\]
In other words, the "little Carleson theorem"${}$ holds for UMD-valued functions.