IUMJ

Title: Compact periods of Eisenstein series of orthogonal groups of rank one

Authors: Joao Pedro Boavida

Issue: Volume 62 (2013), Issue 3, 869-890

Abstract:

Fix a number field $k$ with its adele ring $\mathbb{A}$. Let $G=\mathrm{O}(n+3)$ be an orthogonal group of $k$-rank $1$ and $H=\mathrm{O}(n+2)$ a $k$-anisotropic subgroup. We unwind the global period
\[
(E_{\phi},F)_H=\int_{H_k\setminus H_{\mathbb{A}}}E_{\phi}\cdot\bar{F}
\]
of a spherical Eisenstein series $E_{\phi}$ of $G$ against a cuspform $F$ of $H$ into an Euler product and evaluate the local factors at odd primes.