IUMJ

Title: Interpolating sequences on analytic Besov type spaces

Authors: Nicola Arcozzi, Daniel Blasi and Jordi Pau

Issue: Volume 58 (2009), Issue 3, 1281-1318

Abstract:

We characterize the interpolating sequences for the weighted analytic Besov spaces $B_p(s)$, defined by the norm $$\|f\|^p_{B_p(s)} = |f(0)|^p + \int_{D}|(1 - |z|^2)f'(z)|^p(1 - |z|^2)^{s} \frac{\text{\upshape d}A(z)}{(1 - |z|^2)^2}, $$  $1<p<\infty$ and $0<s<1$, and for the corresponding multiplier spaces $\Mm(B_p(s))$.