IUMJ

Title: Dirac concentrations in Lotka-Volterra parabolic PDEs

Authors: Benoit Perthame and Guy Barles

Issue: Volume 57 (2008), Issue 7, 3275-3302

Abstract: We consider parabolic partial differential equations of Lotka-Volterra type, with a non-local nonlinear term. This models, at the population level, the darwinian evolution of a population; the Laplace term represents mutations and the nonlinear birth/death term represents competition leading to selection. Once rescaled with a small diffusion, we prove that the solutions converge to a moving Dirac mass, this can be interpreted as well separated populations. The velocity and weights cannot be obtained by a simple expression, e.g., an ordinary differential equation. We show that they are given by a constrained Hamilton-Jacobi equation. This extends several earlier results to the parabolic case and to general nonlinearities. Technical new ingredients are a $BV$ estimate in time on the non-local nonlinearity, a characterization of the concentration point (in a monomorphic situation) and, surprisingly, some counter-examples showing that jumps on the Dirac locations are indeed possible.